Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nat Commun ; 14(1): 2678, 2023 05 09.
Article in English | MEDLINE | ID: covidwho-2316451

ABSTRACT

Mucosal immunity plays a significant role in the first-line defense against viruses transmitted and infected through the respiratory system, such as SARS-CoV-2. However, the lack of effective and safe adjuvants currently limits the development of COVID-19 mucosal vaccines. In the current study, we prepare an intranasal vaccine containing cationic crosslinked carbon dots (CCD) and a SARS-CoV-2 antigen, RBD-HR with spontaneous antigen particlization. Intranasal immunization with CCD/RBD-HR induces high levels of antibodies with broad-spectrum neutralization against authentic viruses/pseudoviruses of Omicron-included variants and protects immunized female BALB/c mice from Omicron infection. Despite strong systemic cellular immune response stimulation, the intranasal CCD/RBD-HR vaccine also induces potent mucosal immunity as determined by the generation of tissue-resident T cells in the lungs and airway. Moreover, CCD/RBD-HR not only activates professional antigen-presenting cells (APCs), dendritic cells, but also effectively targets nasal epithelial cells, promotes antigen binding via sialic acid, and surprisingly provokes the antigen-presenting of nasal epithelial cells. We demonstrate that CCD is a promising intranasal vaccine adjuvant for provoking strong mucosal immunity and might be a candidate adjuvant for intranasal vaccine development for many types of infectious diseases, including COVID-19.


Subject(s)
COVID-19 , Vaccines , Female , Animals , Mice , Humans , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic , COVID-19 Vaccines , Carbon , Cations
2.
Signal Transduct Target Ther ; 8(1): 197, 2023 05 10.
Article in English | MEDLINE | ID: covidwho-2315076

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused devastating impacts on the public health and the global economy. Rapid viral antigenic evolution has led to the continual generation of new variants. Of special note is the recently expanding Omicron subvariants that are capable of immune evasion from most of the existing neutralizing antibodies (nAbs). This has posed new challenges for the prevention and treatment of COVID-19. Therefore, exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In sharp contrast to the massive accumulation of mutations within the SARS-CoV-2 receptor-binding domain (RBD), the S2 fusion subunit has remained highly conserved among variants. Hence, S2-based therapeutics may provide effective cross-protection against new SARS-CoV-2 variants. Here, we summarize the most recently developed broad-spectrum fusion inhibitors (e.g., nAbs, peptides, proteins, and small-molecule compounds) and candidate vaccines targeting the conserved elements in SARS-CoV-2 S2 subunit. The main focus includes all the targetable S2 elements, namely, the fusion peptide, stem helix, and heptad repeats 1 and 2 (HR1-HR2) bundle. Moreover, we provide a detailed summary of the characteristics and action-mechanisms for each class of cross-reactive fusion inhibitors, which should guide and promote future design of S2-based inhibitors and vaccines against new coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Amino Acid Sequence , Spike Glycoprotein, Coronavirus , Peptides/genetics
3.
MedComm ; 4(3), 2023.
Article in English | EuropePMC | ID: covidwho-2296307

ABSTRACT

The XBB.1.5 subvariant has drawn great attention owing to its exceptionality in immune evasion and transmissibility. Therefore, it is essential to develop a universally protective coronavirus disease 2019 vaccine against various strains of Omicron, especially XBB.1.5. In this study, we evaluated and compared the immune responses induced by six different spike protein vaccines targeting the ancestral or various Omicron strains of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in mice. We found that spike‐wild‐type immunization induced high titers of neutralizing antibodies (NAbs) against ancestral SARS‐CoV‐2. However, its activity in neutralizing Omicron subvariants decreased sharply as the number of mutations in receptor‐binding domain (RBD) of these viruses increased. Spike‐BA.5, spike‐BF.7, and spike‐BQ.1.1 vaccines induced strong NAbs against BA.5, BF.7, BQ.1, and BQ.1.1 viruses but were poor in protecting against XBB and XBB.1.5, which have more RBD mutations. In sharp contrast, spike‐XBB.1.5 vaccination can activate strong and broadly protective immune responses against XBB.1.5 and other common subvariants of Omicron. By performing correlation analysis, we found that the NAbs titers were negatively correlated with the number of RBD mutations in the Omicron subvariants. Vaccines with more RBD mutations can effectively overcome the immune resistance caused by the accumulation of RBD mutations, making spike‐XBB.1.5 the most promising vaccine candidate against universal Omicron variants.

4.
MedComm ; 4(2), 2023.
Article in English | EuropePMC | ID: covidwho-2276096

ABSTRACT

BA.4 and BA.5 (BA.4/5), the subvariants of Omicron, are more transmissible than BA.1 with more robust immune evasion capability because of its unique spike protein mutations. In light of such situation, the vaccination against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is in desperate need of the third booster. It has been reported that heterologous boosters might produce more effective immunity against wild‐type SARS‐CoV‐2 and the variants. Additionally, the third heterologous protein subunit booster should be considered potentially. In the present study, we prepared a Delta full‐length spike protein sequence‐based mRNA vaccine as the "priming” shot and developed a recombinant trimeric receptor‐binding domain (RBD) protein vaccine referred to as RBD–HR/trimer as a third heterologous booster. Compared to the homologous mRNA group, the heterologous group (RBD–HR/trimer vaccine primed with two mRNA vaccines) induced higher neutralizing antibody titers against BA.4/5‐included SARS‐CoV‐2 variants. In addition, heterologous vaccination exhibited stronger cellular immune response and long‐lasting memory response than the homologous mRNA vaccine. In conclusion, a third heterologous boosting with RBD–HR/trimer following two‐dose mRNA priming vaccination should be a superior strategy than a third homologous mRNA vaccine. The RBD–HR/trimer vaccine becomes an appropriate candidate for a booster immune injection. We prepared a Delta full‐length spike protein sequence‐based mRNA vaccine (Figure A, B) and developed a recombinant trimeric receptor‐binding domain (RBD) protein vaccine (Figure C). Later, the mRNA vaccine was injected as the "priming” shot, and the RBD–HR/trimer vaccine was used as a third heterologous booster (Figure D).

5.
Mol Biomed ; 4(1): 9, 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2262503

ABSTRACT

The current Coronavirus Disease 2019 (COVID-19) pandemic, induced by newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants, posed great threats to global public health security. There is an urgent need to design effective next­generation vaccines against Omicron lineages. Here, we investigated the immunogenic capacity of the vaccine candidate based on the receptor binding domain (RBD). An RBDß-HR self-assembled trimer vaccine including RBD of Beta variant (containing K417, E484 and N501) and heptad repeat (HR) subunits was developed using an insect cell expression platform. Sera obtained from immunized mice effectively blocked RBD-human angiotensin-converting enzyme 2 (hACE2) binding for different viral variants, showing robust inhibitory activity. In addition, RBDß-HR/trimer vaccine durably exhibited high titers of specific binding antibodies and high levels of cross-protective neutralizing antibodies against newly emerging Omicron lineages, as well as other major variants including Alpha, Beta, and Delta. Consistently, the vaccine also promoted a broad and potent cellular immune response involving the participation of T follicular helper (Tfh) cells, germinal center (GC) B cells, activated T cells, effector memory T cells, and central memory T cells, which are critical facets of protective immunity. These results demonstrated that RBDß-HR/trimer vaccine candidates provided an attractive next-generation vaccine strategy against Omicron variants in the global effort to halt the spread of SARS-CoV-2.

6.
MedComm (2020) ; 4(2): e238, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2276095

ABSTRACT

BA.4 and BA.5 (BA.4/5), the subvariants of Omicron, are more transmissible than BA.1 with more robust immune evasion capability because of its unique spike protein mutations. In light of such situation, the vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in desperate need of the third booster. It has been reported that heterologous boosters might produce more effective immunity against wild-type SARS-CoV-2 and the variants. Additionally, the third heterologous protein subunit booster should be considered potentially. In the present study, we prepared a Delta full-length spike protein sequence-based mRNA vaccine as the "priming" shot and developed a recombinant trimeric receptor-binding domain (RBD) protein vaccine referred to as RBD-HR/trimer as a third heterologous booster. Compared to the homologous mRNA group, the heterologous group (RBD-HR/trimer vaccine primed with two mRNA vaccines) induced higher neutralizing antibody titers against BA.4/5-included SARS-CoV-2 variants. In addition, heterologous vaccination exhibited stronger cellular immune response and long-lasting memory response than the homologous mRNA vaccine. In conclusion, a third heterologous boosting with RBD-HR/trimer following two-dose mRNA priming vaccination should be a superior strategy than a third homologous mRNA vaccine. The RBD-HR/trimer vaccine becomes an appropriate candidate for a booster immune injection.

7.
Acta Pharm Sin B ; 2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2176448

ABSTRACT

There are currently approximately 4,000 mutations in the SARS-CoV-2 S protein gene and emerging SARS-CoV-2 variants continue to spread rapidly worldwide. Universal vaccines with high efficacy and safety urgently need to be developed to prevent SARS-CoV-2 variants pandemic. Here, we described a novel self-assembling universal mRNA vaccine containing a heterologous receptor-binding domain (HRBD)-based dodecamer (HRBDdodecamer) against SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28.1), Delta (B.1.617.2) and Omicron (B.1.1.529). HRBD containing four heterologous RBD (Delta, Beta, Gamma, and Wild-type) can form a stable dodecameric conformation under T4 trimerization tag (Flodon, FD). The HRBDdodecamer -encoding mRNA was then encapsulated into the newly-constructed LNPs consisting of a novel ionizable lipid (4N4T). The obtained universal mRNA vaccine (4N4T-HRBDdodecamer) presented higher efficiency in mRNA transfection and expression than the approved ALC-0315 LNPs, initiating potent immune protection against the immune escape of SARS-CoV-2 caused by evolutionary mutation. These findings demonstrated the first evidence that structure-based antigen design and mRNA delivery carrier optimization may facilitate the development of effective universal mRNA vaccines to tackle SARS-CoV-2 variants pandemic.

8.
Nat Commun ; 13(1): 5459, 2022 09 17.
Article in English | MEDLINE | ID: covidwho-2036822

ABSTRACT

The recently emerged Omicron (B.1.1.529) variant has rapidly surpassed Delta to become the predominant circulating SARS-CoV-2 variant, given the higher transmissibility rate and immune escape ability, resulting in breakthrough infections in vaccinated individuals. A new generation of SARS-CoV-2 vaccines targeting the Omicron variant are urgently needed. Here, we developed a subunit vaccine named RBD-HR/trimer by directly linking the sequence of RBD derived from the Delta variant (containing L452R and T478K) and HR1 and HR2 in SARS-CoV-2 S2 subunit in a tandem manner, which can self-assemble into a trimer. In multiple animal models, vaccination of RBD-HR/trimer formulated with MF59-like oil-in-water adjuvant elicited sustained humoral immune response with high levels of broad-spectrum neutralizing antibodies against Omicron variants, also inducing a strong T cell immune response in vivo. In addition, our RBD-HR/trimer vaccine showed a strong boosting effect against Omicron variants after two doses of mRNA vaccines, featuring its capacity to be used in a prime-boost regimen. In mice and non-human primates, RBD-HR/trimer vaccination could confer a complete protection against live virus challenge of Omicron and Delta variants. The results qualified RBD-HR/trimer vaccine as a promising next-generation vaccine candidate for prevention of SARS-CoV-2, which deserved further evaluation in clinical trials.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Protein Subunits , SARS-CoV-2 , Vaccines, Subunit , Water
9.
Front Immunol ; 13: 820336, 2022.
Article in English | MEDLINE | ID: covidwho-1933641

ABSTRACT

The continuous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world has raised unprecedented challenges to the human society. Antibodies and nanobodies possessing neutralization activity represent promising drug candidates. In this study, we report the identification and characterization of a potent SARS-CoV-2 neutralizing nanobody that targets the viral spike receptor-binding domain (S-RBD). The nanobody, termed as Nb-007, engages SARS-CoV-2 S-RBD with the two-digit picomolar binding affinity and shows outstanding virus entry-inhibition activity. The complex structure of Nb-007 bound to SARS-CoV-2 S-RBD reveals an epitope that is partially overlapping with the binding site for the human receptor of angiotensin-converting enzyme 2 (ACE2). The nanobody therefore exerts neutralization by competing with ACE2 for S-RBD binding, which is further ascertained by our in-vitro biochemical analyses. Finally, we also show that Nb-007 reserves promising, though compromised, neutralization activity against the currently-circulating Delta variant and that fusion of the nanobody with Fc dramatically increases its entry-inhibition capacity. Taken together, these data have paved the way of developing Nb-007 as a drug-reserve for potential treatment of SARS-CoV-2 related diseases.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus
10.
Emerg Microbes Infect ; 11(1): 1920-1935, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1908682

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related sarbecoviruses enter host cells by receptor-recognition and membrane-fusion. An indispensable step in fusion is the formation of 6-helix bundle by viral spike heptad repeats 1 and 2 (HR1 and HR2). Here, we report the construction of 5-helix bundle (5HB) proteins for virus infection inhibition. The optimal construct inhibits SARS-CoV-2 pseudovirus entry with sub-micromolar IC50. Unlike HR2-based peptides that cannot bind spike in the pre-fusion conformation, 5HB features with the capability of binding to pre-fusion spike. Furthermore, 5HB binds viral HR2 at both serological- and endosomal-pH, highlighting its entry-inhibition capacity when SARS-CoV-2 enters via either cell membrane fusion or endosomal route. Finally, we show that 5HB could neutralize S-mediated entry of the predominant SARS-CoV-2 variants and a wide spectrum of sarbecoviruses. These data provide proof-of-concept evidence that 5HB might be developed for the prevention and treatment of SARS-CoV-2 and other emerging sarbecovirus infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Hydrogen-Ion Concentration , Membrane Glycoproteins/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/metabolism , Virus Internalization
11.
Cell Mol Immunol ; 19(5): 577-587, 2022 05.
Article in English | MEDLINE | ID: covidwho-1830043

ABSTRACT

Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell-cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Histones , Mice , N-Acetylneuraminic Acid , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
14.
MedComm (2020) ; 2(4): 838-845, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1568243

ABSTRACT

Coronavirus disease 2019 (COVID-19) has brought about a great threat to global public health. Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant B.1.1.529 has been reported in South Africa and induced a rapid increase in COVID-19 cases. On November 24, 2021, B.1.1.529 named Omicron was designated as a variant under monitoring (VUM) by World Health Organization (WHO). Two days later, the Omicron variant was classified as a variant of concern (VOC). This variant harbors a high number of mutations, including 15 mutations in the receptor-binding domain (RBD) of spike. The Omicron variant also shares several mutations with the previous VOC Alpha, Beta, and Gamma variants, which immediately raised global concerns about viral transmissibility, pathogenicity, and immune evasion. Here we described the discovery and characteristics of the Omicron variant, compared the mutations of the spike in the five VOCs, and further raised possible strategies to prevent and overcome the prevalence of the Omicron variant.

16.
Signal Transduct Target Ther ; 6(1): 343, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415924

ABSTRACT

SARS-CoV-2 recognizes, via its spike receptor-binding domain (S-RBD), human angiotensin-converting enzyme 2 (ACE2) to initiate infection. Ecto-domain protein of ACE2 can therefore function as a decoy. Here we show that mutations of S19W, T27W, and N330Y in ACE2 could individually enhance SARS-CoV-2 S-RBD binding. Y330 could be synergistically combined with either W19 or W27, whereas W19 and W27 are mutually unbeneficial. The structures of SARS-CoV-2 S-RBD bound to the ACE2 mutants reveal that the enhanced binding is mainly contributed by the van der Waals interactions mediated by the aromatic side-chains from W19, W27, and Y330. While Y330 and W19/W27 are distantly located and devoid of any steric interference, W19 and W27 are shown to orient their side-chains toward each other and to cause steric conflicts, explaining their incompatibility. Finally, using pseudotyped SARS-CoV-2 viruses, we demonstrate that these residue substitutions are associated with dramatically improved entry-inhibition efficacy toward both wild-type and antibody-resistant viruses. Taken together, our biochemical and structural data have delineated the basis for the elevated S-RBD binding associated with S19W, T27W, and N330Y mutations in ACE2, paving the way for potential application of these mutants in clinical treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19 , Molecular Dynamics Simulation , Mutation, Missense , SARS-CoV-2/chemistry , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
17.
Nucleic Acids Res ; 49(9): 5382-5392, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1387965

ABSTRACT

The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1', which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.


Subject(s)
Biocatalysis , Exoribonucleases/chemistry , Exoribonucleases/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Exoribonucleases/genetics , Guanine , Methyltransferases/chemistry , Methyltransferases/deficiency , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Protein Domains/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics
19.
Science ; 371(6536): 1374-1378, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1255508

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing Mpro inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals. All compounds inhibited SARS-CoV-2 Mpro activity in vitro, with 50% inhibitory concentration values ranging from 7.6 to 748.5 nM. The cocrystal structure of Mpro in complex with MI-23, one of the most potent compounds, revealed its interaction mode. Two compounds (MI-09 and MI-30) showed excellent antiviral activity in cell-based assays. In a transgenic mouse model of SARS-CoV-2 infection, oral or intraperitoneal treatment with MI-09 or MI-30 significantly reduced lung viral loads and lung lesions. Both also displayed good pharmacokinetic properties and safety in rats.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Chemokine CXCL10/metabolism , Disease Models, Animal , Drug Design , Humans , Interferon-beta/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Oligopeptides , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Protease Inhibitors/toxicity , Rats , Rats, Sprague-Dawley , Viral Load/drug effects , Virus Replication
20.
MedComm (2020) ; 2(3): 430-441, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1222647

ABSTRACT

The emerging variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in pandemic call for the urgent development of universal corona virus disease 2019 (COVID-19) vaccines which could be effective for both wild-type SARS-CoV-2 and mutant strains. In the current study, we formulated protein subunit vaccines with AS03 adjuvant and recombinant proteins of S1 subunit of SARS-CoV-2 (S1-WT) and S1 variant (K417N, E484K, N501Y, and D614G) subunit (S1-Mut), and immunized transgenic mice that express human angiotensin-converting enzyme 2 (hACE2). The S1 protein-specific antibody production and the neutralization capability for SARS-CoV-2 and B.1.351 variant were measured after immunization in mice. The results revealed that the S1-Mut antigens were more effective in inhibiting the receptor-binding domain and ACE2 binding in B.1.351 variant than in wild-type SARS-CoV-2. Furthermore, the development of a bivalent vaccine exhibited the ideal neutralization properties against wild-type and B.1.351 variant, as well as other variants. Our findings may provide a rationale for the development of a bivalent recombinant vaccine targeting the S1 protein that can induce the neutralizing antibodies against both SARS-CoV-2 variants and wild-type of the virus and may be of importance to explore the potential clinical use of bivalent recombinant vaccine in the future.

SELECTION OF CITATIONS
SEARCH DETAIL